Resources img


Articles and Whitepapers

MAY 22, 2019

In-situ pore-scale imaging and image-based modelling of capillary trapping for geological storage of CO2

We describe an imaging and pore-scale modelling study of capillary trapping in the Paaratte Sandstone formation in the Otway Basin, Australia. Three-dimensional X-ray computed tomography (micro-CT) was used to characterize the pore structure of the reservoir core. We obtain in-situ pore-scale images of the distribution of CO2:brine analogue fluid pairs (octane:brine) within reservoir samples during low capillary number drainage and imbibition flooding experiments. The images were recorded using time-lapse X-ray micro-tomography at elevated pressure. The observed two-phase fluid distributions are consistent with a water wet system. The micro-CT images are used directly as input to a geometrically accurate quasi-static pore-scale simulation model. The validity of the quasi-static assumption is investigated by comparing on a pore-by-pore basis the simulated and imaged fluid distributions. The pore filling states are in good agreement both for drainage and imbibition displacements and the computed capillary trapping curve agrees with experimental data. This indicate that quasi-static pore-scale physics can be used to obtain averaged or continuum flow properties for low capillary number displacements. We perform a sensitivity study of the impact of the advancing contact angle on capillary trapping. The magnitude of residual trapping increases with decreasing contact angle. Land's trapping coefficient increases with increasing contact angle. We compute capillary pressure and relative permeability scanning curves. Simulated relative permeability hysteresis is compared with that predicted by the industry-standard Carlson's and Killough's models. Killough's model reproduces the simulated data more accurately.

MAY 31, 2018

New model to predict accurately trapping in water-wet porous media

In this paper we introduce a new way of modelling Imbibition using network models. This new model account for the geometrical characteristics of the pore, spatial location of the connecting throats and the local fluid topology at the time of local displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations.

Do you want to know more?

Contact us